arrow_back
Back
lock
Introduction and Demo
lock
Preview of the course
lock
Guide for this course
lock
Module 1 Introduction to Machine learning
lock
Module 1-Session 2
lock
M1 Session 2 Python Installation
lock
M1 Session 3 Fundamentals of Python
lock
Quiz Module 1 - Introduction to Machine Learning and Python
lock
Module 2 - Data Structures in Python
lock
Module 2, Session1 - Functions and Jupyter Installation
lock
Module 2, Session 2 - Lists in Python
lock
Module 2, Session 3
lock
Quiz Module 2 - Python Core
lock
Module 3 Numpy
lock
Module 3 Session1 - Numpy Part 1
lock
Module 3 Session 2 - Numpy Part 2
lock
Module 3 Session 3 - Numpy Part 3
lock
Module 3 Session 4 - Numpy with csv
lock
Quiz Module 3 - Numpy Arrays
lock
Module 4
lock
Module 4 Session 1 - Line Plots
lock
Module 4 Session 2- Subplots, Sigmoid and Parabola
lock
Module 4 Session 3 - ScatterPlot Part 1
lock
Module 4 Session 4- Scatter plot 2
lock
Module 4 Session 5- Bar Graph and Pie Chart
lock
Quiz Module 4 - Matplotlib
lock
Pandas
lock
Module 5 Session1 - Series in Pandas
lock
Module 5 Session 2- DataFrames Part 1
lock
Module 5 Session 3 - DataFrames Part 2
lock
Module 5 Session 4- Index of DataFrame
lock
Quiz Module 5 - Pandas Core Part 1
lock
Module 5 Session 5- CSV File
lock
Module 5 Session 6- NaN Values
lock
Module 5 Session 7- Exercise
lock
Module 5 Session 8-Solution
lock
Module 5 Session 9 - EDA
lock
Quiz Module 5 - Pandas Core Part 2
lock
Module 6 What is Linear Regression?
lock
M6 Session 1 - What is Linear Regression
lock
M6 Session 2- Coding from scratch
lock
M6 Session 3 - Coding from scratch - Part 2
lock
M6 Session 4- Scratch vs Sklearn
lock
M6 Session 5 - Years vs Salary
lock
M6 Session 6- Accuracy and Plot
lock
M6 Session 7 - Joblib
lock
Quiz Module 6 - Linear Regression
lock
Module 7 Basic Intuition on Logistic Regression
lock
M7 Session 1- Basic Intuition on Logistic Regression
lock
M7 Session 2 - Logistic Regression from Scratch Part 1
lock
M7 Session 3 - Logistic Regression from scratch Part 2
lock
M7 Session 4 - Logistic Regression using Sklearn
lock
Quiz Module 7 - Logistic Regression
lock
Module 8 KNN algorithm
lock
M8 Session 1 KNN algorithm
lock
M8 Session 2- KNN using Sklearn
lock
M8 Session 3 - Datasets Sklearn
lock
M8 Session 4 - Iris Dataset
lock
M8 Session 5- Iris Coding
lock
M8 Session 6- Visualization
lock
Module 8 Session 7- Prediction of values
lock
Quiz Module 8 - KNN
lock
Module 9
lock
M9 Session1- Images in Matplotlib
lock
M9 Session2 - Solution on Checkerboard
lock
M9 Session 3- Digits Classification
lock
M9 Session 4- What is SVM
lock
M9 Session 5- Coding SVM in Sklearn
lock
Module 10
lock
M10 Session 1-What-is-Clustering
lock
M10 Session 2-Flowchart-of-KMeans
lock
M10 Session 3-Maths-behind-KMeans
lock
M10 Session 4 - CLustering in Sklearn
lock
M10 Session 5-Elbow-Method
lock
M10 Session 6 - Maths behind Elbow Method
lock
M10 Session 7-Market-Segmentation
lock
Assignment 2 - Clustering Questions
Preview - Machine learning using Python- Self Learning
Discuss (
0
)
navigate_before
Previous
Next
navigate_next