|
Introduction and Demo
|
|
|
|
Preview of the course
|
Preview
|
|
Guide for this course
|
|
|
Module 1 Introduction to Machine learning
|
|
|
|
Module 1-Session 2
|
|
|
|
M1 Session 2 Python Installation
|
|
|
|
M1 Session 3 Fundamentals of Python
|
|
|
|
Quiz Module 1 - Introduction to Machine Learning and Python
|
|
|
Module 2 - Data Structures in Python
|
|
|
|
Module 2, Session1 - Functions and Jupyter Installation
|
|
|
|
Module 2, Session 2 - Lists in Python
|
|
|
|
Module 2, Session 3
|
|
|
|
Quiz Module 2 - Python Core
|
|
|
Module 3 Numpy
|
|
|
|
Module 3 Session1 - Numpy Part 1
|
|
|
|
Module 3 Session 2 - Numpy Part 2
|
|
|
|
Module 3 Session 3 - Numpy Part 3
|
|
|
|
Module 3 Session 4 - Numpy with csv
|
|
|
|
Quiz Module 3 - Numpy Arrays
|
|
|
Module 4
|
|
|
|
Module 4 Session 1 - Line Plots
|
|
|
|
Module 4 Session 2- Subplots, Sigmoid and Parabola
|
|
|
|
Module 4 Session 3 - ScatterPlot Part 1
|
|
|
|
Module 4 Session 4- Scatter plot 2
|
|
|
|
Module 4 Session 5- Bar Graph and Pie Chart
|
|
|
|
Quiz Module 4 - Matplotlib
|
|
|
Pandas
|
|
|
|
Module 5 Session1 - Series in Pandas
|
|
|
|
Module 5 Session 2- DataFrames Part 1
|
|
|
|
Module 5 Session 3 - DataFrames Part 2
|
|
|
|
Module 5 Session 4- Index of DataFrame
|
|
|
|
Quiz Module 5 - Pandas Core Part 1
|
|
|
|
Module 5 Session 5- CSV File
|
|
|
|
Module 5 Session 6- NaN Values
|
|
|
|
Module 5 Session 7- Exercise
|
|
|
|
Module 5 Session 8-Solution
|
|
|
|
Module 5 Session 9 - EDA
|
|
|
|
Quiz Module 5 - Pandas Core Part 2
|
|
|
Module 6 What is Linear Regression?
|
|
|
|
M6 Session 1 - What is Linear Regression
|
|
|
|
M6 Session 2- Coding from scratch
|
|
|
|
M6 Session 3 - Coding from scratch - Part 2
|
|
|
|
M6 Session 4- Scratch vs Sklearn
|
|
|
|
M6 Session 5 - Years vs Salary
|
|
|
|
M6 Session 6- Accuracy and Plot
|
|
|
|
M6 Session 7 - Joblib
|
|
|
|
Quiz Module 6 - Linear Regression
|
|
|
Module 7 Basic Intuition on Logistic Regression
|
|
|
|
M7 Session 1- Basic Intuition on Logistic Regression
|
|
|
|
M7 Session 2 - Logistic Regression from Scratch Part 1
|
|
|
|
M7 Session 3 - Logistic Regression from scratch Part 2
|
|
|
|
M7 Session 4 - Logistic Regression using Sklearn
|
|
|
|
Quiz Module 7 - Logistic Regression
|
|
|
Module 8 KNN algorithm
|
|
|
|
M8 Session 1 KNN algorithm
|
|
|
|
M8 Session 2- KNN using Sklearn
|
|
|
|
M8 Session 3 - Datasets Sklearn
|
|
|
|
M8 Session 4 - Iris Dataset
|
|
|
|
M8 Session 5- Iris Coding
|
|
|
|
M8 Session 6- Visualization
|
|
|
|
Module 8 Session 7- Prediction of values
|
|
|
|
Quiz Module 8 - KNN
|
|
|
Module 9
|
|
|
|
M9 Session1- Images in Matplotlib
|
|
|
|
M9 Session2 - Solution on Checkerboard
|
|
|
|
M9 Session 3- Digits Classification
|
|
|
|
M9 Session 4- What is SVM
|
|
|
|
M9 Session 5- Coding SVM in Sklearn
|
|
|
Module 10
|
|
|
|
M10 Session 1-What-is-Clustering
|
|
|
|
M10 Session 2-Flowchart-of-KMeans
|
|
|
|
M10 Session 3-Maths-behind-KMeans
|
|
|
|
M10 Session 4 - CLustering in Sklearn
|
|
|
|
M10 Session 5-Elbow-Method
|
|
|
|
M10 Session 6 - Maths behind Elbow Method
|
|
|
|
M10 Session 7-Market-Segmentation
|
|
|
|
Assignment 2 - Clustering Questions
|
|